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Asymptotic analysis and renormalized perturbation theory of the non-Hermitian dynamics
of an inviscid vortex
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An analysis of the non-Hermitian fluid systems described by the Rayleigh equation in an unbounded domain
has been carried out in the regime of large wave numbers. The evolution of a special class of localized
vorticities is also discussed. Asymptotic and perturbative approaches lead to the same final result. In the limit
considered, the system is stable. The perturbation analysis reveals interesting pathologies of the non-Hermitian
systems. Under specific conditions, the expansion is found to show secular growth. A discussion about the
mechanism of insurgence of such singular behavior is presented. It is also shown that the divergent expansion
is renormalizable by means of the renormalization group method—the renormalized results are in complete
conformity with the asymptotic solutions.
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I. INTRODUCTION

Non-Hermitian operators represent a challenge for fu
tional analysts and mathematical physicists. For such op
tors, no general theory of spectral resolution in infinite
mensional function spaces is yet available. The m
obstacle is that, unlike Hermitian operators, they are not
solvable in terms of orthogonal and complete sets of eig
modes, making impossible the formulation of an appropri
spectral theorem. Moreover, analogous to nonlinear syste
the coupling induced by non-Hermitian operators render
decomposition in terms of orthogonal modes~i.e., Fourier
modes! quite useless.

The repercussions on the analysis of physical syste
whose dynamics is governed by a non-Hermitian opera
are rather serious. A canonical example is represented
sheared flows, which are described by the ideal Euler eq
tion. When these equations are linearized about an equ
rium shear flow, the generator of the dynamics turns out to
non-Hermitian. The energy of the perturbations, which is
composed from the energy of the mean field, is not clo
and the exchange of the energies among perturbations
the ambient field is extremely complicated. A physical co
sequence is that the linear equations do not conserve
ergy’’ which is an essential property of the original nonline
system.

In this paper we will discuss some of the pathologies
non-Hermitian operators by analyzing, perhaps, the simp
example of a shear-flow system, the Rayleigh equation in
unbounded domain. In bounded~channel! regions this equa-
tion has been widely analyzed in the framework of t
Kelvin-Helmholtz instability@1#.
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By solving the initial value problem~which for non-
Hermitian systems is more appropriate than solving an
genvalue problem!, we will first investigate the time-
asymptotic evolution of the system. Then we will rederi
this result by means of a perturbative analysis in the reg
of small curvature of the ambient flow. The issue of the v
lidity of the perturbation theory for non-Hermitian systems
a central point in this investigation. As pointed out befo
non-Hermitian operators induce coupling of orthogon
modes and they mimic the behavior of the nonlinear ope
tors. Since nonlinearities are known to induce divergence
perturbation theory@2,3# we might expect to find the sam
pathology in non-Hermitian systems. This is indeed the ca
We will show that, under specific conditions, the perturbat
analysis leads to a singularity. We will also show how
renormalize this divergence by means of the renormaliza
group method@4,5#. The renormalized expression comes o
to be in perfect agreement with the results of the asympot
analysis.

This proof of renormalizability is important in connectio
with another issue, namely, the suitability of Kelvin’s repr
sentation to describe strong sheared flows. This method@6#,
first introduced more than a century ago in the stabi
analysis of the Couette flow, and widely used in the l
decade@7–14# to unveil many important aspects of non
Hermitian, shear-flow systems, is rather limited; it is app
cable only if the the shear-flow profile is linear. The reno
malized perturbative analysis shows that a departure f
the linear profile need not, and perhaps does not lead
singular changes in the time asymptotic behavior. The res
of this study puts Kelvin’s extremely simple method on
much firmer footing.

In Sec. II, we will present an asymptotic analysis of t
unbounded Rayleigh equation followed in Sec. III by its p
turbative investigation. Section IV will be devoted to th
©2001 The American Physical Society12-1
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proof of renormalizability of the divergence found in Se
III. We summarize our results in Sec. V.

II. ASYMPTOTIC INITIAL VALUE TREATMENT

We start our analysis from the two-dimensional~2D! vor-
ticity equation for inviscid fluids which reads

] tV1$F,V%50, ~1!

where where$,% represents the Poisson bracket. The strea
function F is related to the velocityV and the vorticityV
through the equations

V5¹F3ez , ~2!

V52DF, ~3!

whereez is the unit vector in thez direction andD is the 2D
Laplacian. By decomposing the streamfunction as

F5F01f, ~4!

whereF0 represents the equilibrium andf the perturbative
field, we can linearize Eq.~1! to obtain

] t~Df!1$f,DF0%1$F0 ,Df%50. ~5!

For a parallel equilibrium flow of the typeV0
5„2 f (y),0,0…, wheref (y) is an analytic function, we obtain
the Rayleigh equation

„] t2 f ~y!]x…Df52 f 9~y!]xf, ~6!

where 85]y . Since the ambient field is homogeneous w
respect tox, we can decomposef into Fourier modes pro-
portional toeikx. Writing ]x5 ik with a good quantum num
ber k ~in what follows, we takek.0) Eq. ~6! translates as

@] t2 ik f ~y!#Df52 ik f 9~y!f. ~7!

By inverting the Laplacian operatorD we obtain

f52D21v5
1

2kE2`

1`

e2ku ȳ2yuv~ ȳ,t !dȳ. ~8!

By using Eq.~8! we can recast Eq.~7! into

@] t2 ik f ~y!#v5
i f 9~y!

2 E
2`

1`

e2ku ȳ2yuv~ ȳ,t !dȳ. ~9!

In terms of

Q~y,t !5e2 ik f (y)tv~y,t ! ~10!

the system is described by

] tQ~y,t !5
i f 9~y!

2 E
2`

1`

e2ku ȳ2yuQ~ ȳ,t !eikt[ f ( ȳ)2 f (y)]dȳ.

~11!

We will carry out the analysis of Eq.~11! in the regime of
short wavelengths~large k) perturbations. In the Appendix
02631
.

-

we will present a treatment which takes into account spe
classes of localized perturbations and which is valid for wa
numbersk.1.

In the first case, sincek is large thene2kuy2 ȳu is a strong
damping factor and it is reasonable to assume that the m
contribution to the integral in Eq.~11! comes from the neigh-
borhood ofy. By Taylor expandingf ( ȳ) andQ( ȳ,t) abouty
we have

f ~ ȳ!2 f ~y!. f 8~y!~ ȳ2y!1
f 9~y!

2
~ ȳ2y!25az1bz2,

~12!

Q~ ȳ,t !.Q~y,t !1]yQ~y,t !~ ȳ2y!5Q~y,t !1]yQ~y,t !z,

~13!

wherez5 ȳ2y, a5 f 8(y) andb5 f 9(y)/2. Substituting Eqs.
~12!–~13! into Eq. ~11! we have

] tQ5
i f 9~y!

2
QE

2`

1`

e2kuzueikt(az1bz2)dz

1
i f 9~y!

2
]yQE

2`

1`

ze2kuzueikt(az1bz2)dz. ~14!

An asymptotic evaluation of the above integrals gives t
different limits depending on whether the first derivativea
5 f 8(y) vanishes or not. Ifa5 f 8(y) is nonzero then, for a
large time, the two integrals@15# yield

] tQ5
2ib

k~11a2t2!
Q2

4abt

k2~11a2t2!2
]yQ. ~15!

We have gone back to a partial differential equation. Ho
ever since we are interested in the long-term time behav
we may neglect the second term on the right side due to
faster decay (t23). In force of this neglection we can, then
readily integrate Eq.~15! to find

Q~y,t !5Q0~y!ei (b/ak)tan21(at). ~16!

Therefore, fort→`, depending on the sign ofa

Q~y,t !→Q0~y!ei (bp/2ak)sgn(a), ~17!

implying a simple phase shift from the initial perturbation.
terms of the vorticity, we recover an oscillatory behavior
the type

v~y,t !5Q0~y!ei (bp/2ak)sgn(a)eik f (y)t. ~18!

An important deviation from the oscillatory response
found whenf 8(y) vanishes at some point. In this case, E
~11! becomes
2-2
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] tQ5
i f 9~y!

2
QE

2`

1`

e2kuzueiktbz2
dz

1
i f 9~y!

2
]yQE

2`

1`

ze2kuzueiktbz2
dz. ~19!

The second integral vanishes by symmetry, and
asymptotic evaluation of the first leads to the equation

] tQ5Abp

kt
ei (3/4)pQ, ~20!

with the solution

Q~y,t !5Q0~y!e2A(bp/k)ei (3/4)pAt. ~21!

We notice that, independent of the sign ofb, Q always de-
cays with time. The vorticityv

v~y,t !5Q0~y!e2A(bp/k)ei (3/4)pAteik f (y)t ~22!

has oscillations imposed on the decay.
The main result of this section is that in an unbound

inviscid fluid with a background parallel shear flow, the vo
ticity perturbations for largek show asymptotic oscillations i
the first derivative of the background flow does not vanish
some point. At the points where the first derivative does v
ish, the perturbations suffer an exponential decay of the t
e2At.

III. PERTURBATIVE ANALYSIS

In this section, we develop a perturbation analysis of
Rayleigh equation when the flow curvaturef 9(y) is small.
Assuming f 9(y)5«2g(y), whereg(y) is an O(1) function
and« is a small positive parameter quantifying the smalln
of the curvature with respect to the flowf (y), Eq.~7! may be
written as

@] t2 ik f ~y!#Df52«2ikg~y!f. ~23!

By using Eq.~8! and applying@] t2 ik f (y)#21 to both sides
of Eq. ~23!, we arrive at the integral equation

v~y,t !5V0~y!eik f (y)t1«2
ig~y!

2

3E
2`

1`

e2ku ȳ2yuS E
0

t

v~ ȳ, t̄ !eik f (y)(t2 t̄ )d t̄ D dȳ,

~24!

whereV0(y) is an arbitrary function, to be specified by th
initial conditions. We look for an approximate solution of E
~24! by means of a Born perturbative series of the type

v5 (
n50

1`

«2nvn . ~25!
02631
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Plugging Eq.~25! into Eq. ~24!, we obtain the following
recursion relations:

v05V0~y!eik f (y)t, ~26!

v15
ig~y!

2 E
2`

1`

e2ku ȳ2yuS E
0

t

v0~ ȳ, t̄ !eik f (y)(t2 t̄ )d t̄ D dȳ,

~27!

A

vm5
ig~y!

2 E
2`

1`

e2ku ȳ2yuS E
0

t

vm21~ ȳ, t̄ !eik f (y)(t2 t̄ )d t̄ D dȳ.

~28!

Carrying out the integration int̄ the first order correctionv1
reads

v1~y,t !5
eik f (y)tg~y!

2k

3E
2`

1`

e2ku ȳ2yuV0~ ȳ!
eik[ f ( ȳ)2 f (y)] t21

f ~ ȳ!2 f ~y!
dȳ.

~29!

To determine the temporal behavior, we must evaluate
integral on the right side of Eq.~29!

S~y,t !5E
2`

1`

e2ku ȳ2yuV0~ ȳ!
eik[ f ( ȳ)2 f (y)] t21

f ~ ȳ!2 f ~y!
dȳ. ~30!

Following the argument used in the previous section,
largek, we can approximate

V0~ ȳ!.V0~y!1~ ȳ2y!]yV0~y!, ~31!

and f ( ȳ) by Eqs.~12!. Using ~12! and Eq.~31!, S becomes

S5V0~y!E
2`

1`

e2kuzu e
ik(az1bz2)t21

az1bz2
dz

1]yV0~y!E
2`

1`

ze2kuzu e
ik(az1bz2)t21

az1bz2
dz. ~32!

By differentiating with time, we obtain

] tS5 ikFV0~y!E
2`

1`

e2kuzueik(az1bz2)tdz

1]yV0~y!E
2`

1`

ze2kuzueik(az1bz2)tdzG . ~33!

The two integrals in the above equation are the same alre
calculated in Eq.~14!. Analogously to what done before w
neglect the second integral on the right hand side due to
faster decay, obtaining forS
2-3
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] tS5
2iV0~y!

11a2t2
, ~34!

which is easily integrated as

S5
2i

a
V0~y!tan21~at!. ~35!

The first order correctionv1 is given by

v1~y,t !5eik f (y)t
2ig~y!

ak
V0~y!tan21~at!. ~36!

The result of the perturbative analysis is

v~y,t !5eik f (y)tV0~y!F11«2
ig~y!

ak
tan21~at!G , ~37!

in ‘‘full’’ agreement with the result of Eq.~18!.
A pathology of the perturbative analysis is found in t

case whenf 8(y) vanishes for somey5ys . In fact for a
50, S reads

S5V0~y!E
2`

1`

e2kuzu e
ikbz2t21

bz2
dz

1]yV0~y!E
2`

1`

ze2kuzu e
ikbz2t21

bz2
dz. ~38!

Since the second integral on the right hand side vanishes
symmetry considerations, we are lead to

] tS5 ikV0~y!E
2`

1`

e2kuzueikbz2tdz. ~39!

Evaluating the integral by familiar means, we find

] tS5kV0~y!A p

kbt
ei (3/4)p, ~40!

which, when integrated, yields

S5V0~y!Akp

b
ei (3/4)p2At. ~41!

The resultingv(y,t)

v~y,t !5eik f (y)tV0~y!S 11«Ag~y!p

2k
ei (3/4)p2At D

~42!

shows secular growth in time. The perturbative analysis
verges, and breaks down at time scalest;«22. In Sec. IV,
we will show that this secularity is renormalizable.

We end this section with a remark about the insurgenc
this secular behavior. Let us consider, for simplicity, the r
part of S
02631
or

i-

of
l

Re~S!5V0~y!E
2`

1`

e2ku ȳ2yu cos~k@ f ~ ȳ!2 f ~y!#t !21

f ~ ȳ!2 f ~y!
dȳ.

~43!

If f ( ȳ)2 f (y) is an odd function of (ȳ2y), Re(S)50 due to
symmetry. For

f ~ ȳ!2 f ~y!5Fe~ ȳ2y!, ~44!

with Fe( ȳ2y) an even function ofȳ2y, Re(S) reads

Re~S!5V0~y!E
2`

1` e2kuy2 ȳu

Fe~ ȳ2y!
@cos~ktFe~ ȳ2y!!21#dȳ.

~45!

We further assume (a)Fe( ȳ2y) is a function of definite
sign, (b) limȳ→yFe( ȳ2y)50, and (c) e2kuy2 ȳu/Fe( ȳ2y)
decays at infinity faster than 1/(ȳ2y).

Due to ~b! the envelope of the integrand,e2ku ȳ2yu/Fe( ȳ
2y) is singular. We want to classify the dependence
Re(S) on t according to the type of singularity tha
e2kuy2 ȳu/Fe( ȳ2y) has atȳ5y. To this end let us rewrite Eq
~45! as

Re~S!5V0~y!E
2`

1`

J~ t,z,k!dz, ~46!

where

J~ t,z,k!5
e2kuzu

Fe~z!
@cos~ktFe~z!!21#. ~47!

If 1/Fe(z) diverges atz50 as 1/zn with n>1, then the en-
velopee2kuzu/Fe(z) is not integrable. Therefore for increas
ing t , since the effective frequency in cos@ktFe(z)# increases
and cos@ktFe(z)#21 has a definite sign, the integral o
J(t,z,k) in Eq. ~46! tends to some fraction of the infinit
area undere2kuzu/Fe(z). This means that Re(S) is an increas-
ing function of t; in other words Re(S) has secular growth
On the other end ife2kuzu/Fe(z) is integrable, secularity will
not occur since, no matter what the increase int, the area
undere2kuzu/Fe(z) will always be finite.

Summarizing, the origin of the secularity is in the sing
larity of the envelopee2kuzu/Fe(z) at zero. In order to obtain
a nondivergent behavior, there is a need to introduce an
propriate cutoff at smallz.

IV. RENORMALIZATION

In this section by means of the renormalization gro
method@4,5# we will uniformize the divergence met above
In order to renormalize the expansion given in Eq.~42! we
introduce in the system an arbitrary parametert ~a cutoff!,
and a renormalization constant
2-4
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R~y,t!511 (
n51

1`

«nan~y,t! ~48!

such that

V0~y!5R~y,t!V~y,t!. ~49!

The coefficientsan(y,t) are chosen order by order in« to
eliminate the secular terms.

By adding and subtractingAt to At and using Eq.~48! in
Eq. ~42! we obtain, to order«,

v~y,t !5V~y,t!eikxf (y)tF11«Ag~y!p

2k
ei (3/4)p2~At2At!G

1V~y,t!eikxf (y)t«SAg~y!p

2k
ei (3/4)p2At1a1D

1O~«2!. ~50!

It is clear that by choosing

a152Ag~y!p

2k
ei (3/4)p2At ~51!

the secular term vanishes.
Sincet does not appear in the original problem,v(y,t)

should not depend on it. Therefore, we impose the renorm
ization group equation

S d

dt
v D

t5t

50, ~52!

which gives forV(y,t) the equation

d

dt
V5«VAg~y!p

2k
ei (3/4)p

1

At
~53!

with the solution

V~y,t !5Ṽ0~y!e«A[g(y)p/2k]ei (3/4)p2At, ~54!

whereṼ0(y) is the initial value of Eq.~53!.
The final renormalized expansion is therefore

v~y,t !5Ṽ0~y!e2«A[g(y)p/2k]ei (3/4)pAteik f (y)t, ~55!

which is in agreement with Eq.~22!. This shows that the
first-order correction divergence is renormalizable.

V. SUMMARY

The evolution of a fluid system described by the u
bounded Rayleigh equation has been investigated. Eve
this simple context, pathologies due to the non-Hermit
nature of the problem arise. We first carried out
asymptotic nonperturbative analysis of the system in the
gime of largek. The analysis shows the stability of the sy
tem. The type of stable behavior depends on whether the
derivative of the flow vanishes at a particular point. At poin
02631
l-

-
in

n

e-

rst

y0 where f 8(y0)Þ0, the vorticity simply oscillates in time
~the same result holds for localized perturbations!. For yd
with f 8(yd)50, it experiences an exponential decay of t
type e2At.

We recall that the analysis of the Rayleigh equation in
channel also predicts the stability for largek, while Kelvin-
Helmholtz unstable modes are found for large wavelen
perturbations. However a close comparison between
present system and the one described by the channel
leigh equation is difficult since the absence of boundar
drastically alters the physical and mathematical nature of
problem.

The perturbative analysis of the system shows a poss
pathology of non-Hermitian systems, namely, a diverge
of the first-order correction in the perturbation expansio
This problem is reminiscent of the analogous patholog
met in nonlinear systems; the common origin is the coupl
of modes, their nonindependent time evolution. Divergen
are found in the case of vanishingf 8(y), while for f 8(y)
Þ0, uniform expansions always pertain.

The singularity of the perturbative analysis is renormal
able by means of the renormalization group meth
Asymptotic solutions and the results of the renormalized p
turbative expansions are in full agreement.
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APPENDIX

Our goal is to solve Eq.~11! for a special class of local
ized perturbations, therefore we need to evaluate the inte

I 5E
2`

1`

e2ku ȳ2yuQ~ ȳ,t !eikt[ f ( ȳ)2 f (y)]dȳ. ~A1!

By the change of variablez5 ȳ2y, I becomes

I 5E
2`

1`

Q~y1z,t !e2kuzueikt[ f (y1z)2 f (y)]dz. ~A2!

We assume:
~i! Q(y1z) is supported inV ~bounded! and isC`(R),
~ii ! u]z

n11Q(y1z,t)u,B(t) ;n,;t, where B(t) is a
continuous oft (t>0); and

~iii ! f (y1z)5 f (y)1 f 8(y)z in V with f 8(y)Þ0.
Using ~iii ! above and splitting in two the domain of inte

gration we have

I 5I 11I 2 , ~A3!

where
2-5
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I 15E
0

1`

Q~y1z,t !e2kzeikt f 8(y)zdz ~A4!

and

I 25E
2`

0

Q~y1z,t !ekzeikt f 8(y)zdz. ~A5!

Integratingn11 times by partsI 1 we obtain

I 15 Ĩ 1
(n)1R1

(n) , ~A6!

where

Ĩ 1
(n)5 (

m50

n ]y
mQ~y,t !

@k~12 i t f 8~y!!#m11
~A7!

and

R1
(n)5

1

@k~12 i t f 8~y!!#n11

3E
0

1`

]z
n11Q~y1z,t !e2kz(12 i t f 8(y))dz. ~A8!

Analogously, integratingn11 times by partsI 2 we have

I 25 Ĩ 2
(n)1R2

(n) , ~A9!

where

Ĩ 2
(n)5 (

m50

n

~21!m
]y

mQ~y,t !

@k~11 i t f 8~y!!#m11
~A10!
s

.

02631
and

R2
(n)5

~21!n11

@k~11 i t f 8~y!!#n11

3E
2`

0

]z
n11Q~y1z,t !ekz(11 i t f 8(y))dz. ~A11!

Now if k.1 and using the assumption~ii !, we have for allt

lim
n→1`

uI 12 Ĩ 1
(n)u5 lim

n→1`

uR1
(n)u50, ~A12!

lim
n→1`

uI 22 Ĩ 2
(n)u5 lim

n→1`

uR2
(n)u50. ~A13!

Therefore we obtain forI 1 , I 2 the series representations

I 15 (
m50

1` ]y
mQ~y,t !

km11~12 i t f 8~y!!m11
, ~A14!

I 25 (
m50

1`

~21!m
]y

mQ~y,t !

km11~11 i t f 8~y!!m11
. ~A15!

Finally we have forI

I 5
2Q

k~11t2f 8~y!2!
1

4i f 8~y!t]yQ

k2~11t2f 8~y!2!2
1O~ t24!.

~A16!

Keeping the first two terms in the limitt→` and substituting
I in Eq. ~11! we again obtain Eq.~15!. Therefore the same
results previously obtained for largek and f 8(y)Þ0 will
hold.
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